
AlphaXCoin (AXC) Technical

Specification

Document Version: 1.0

Last Updated: May 18, 2025

Contract Version: 0.8.24

Status: Production

Table of Contents

1. Introduction

2. Contract Overview

3. System Architecture

4. Technical Dependencies

5. Access Control System

6. Data Structures

7. Token Sale Implementation

8. Reward Mechanisms

9. External Integrations

10. Function Specifications

11. Events

12. Security Implementation

13. Gas Optimization

14. Deployment Requirements

15. Testing Guidelines

16. Appendices

1. Introduction

This technical specification document describes the implementation details,

architecture, and functionality of the AlphaXCoinEnhanced (AXC) smart contract.

The contract is designed to provide a comprehensive token ecosystem that includes

multi-phase token sales, promotional incentives, staking mechanisms, referral

rewards, and revenue sharing capabilities.

1.1 Purpose

The purpose of this document is to provide a detailed technical reference for

developers, auditors, and technical stakeholders involved in the deployment,

integration, or evaluation of the AlphaXCoin smart contract.

1.2 Scope

This document covers the technical aspects of the AlphaXCoin smart contract,

including:

 Contract architecture and design patterns

 Function specifications and behavior

 Data structures and state management

 Security implementations and mechanisms

 External integrations and dependencies

1.3 Contract Address

Contract will be deployed on BNB Chain at: [To be determined after deployment]

2. Contract Overview

AlphaXCoinEnhanced is an ERC20-compliant token with extended functionality for

implementing a comprehensive tokenomics model. The contract incorporates multiple

features designed to create a secure, sustainable ecosystem.

2.1 Key Features

 Standard Compliance: ERC20 and ERC20Permit implementation

 Multi-Phase Sale: Three-tiered pricing structure with automated phase

transitions

 Reward Mechanisms: Promotional codes, staking, referrals, and revenue

sharing

 Access Control: Role-based permissions with KYC and blacklist functionality

 Security Features: Emergency mode, pausability, reentrancy protection

 Price Oracle Integration: Chainlink BNB/USD price feed for accurate

pricing

2.2 Contract Inheritance

The contract inherits from multiple OpenZeppelin contracts:

 ERC20: Standard token implementation

 ERC20Permit: Gasless approval functionality

 Ownable: Ownership control

 AccessControl: Role-based permissions

 Pausable: Emergency pause capability

 ReentrancyGuard: Protection against reentrancy attacks

3. System Architecture

3.1 High-Level Architecture

The AlphaXCoin contract implements a layered architecture with distinct

components:

1. Core Token Layer: ERC20 implementation with permit functionality

2. Access Control Layer: Role-based permission system

3. Sale Management Layer: Phase-based token distribution

4. Reward Layer: Staking, referrals, and promotional mechanisms

5. Revenue Layer: Revenue sharing and distribution

6. Security Layer: Emergency controls and pause functionality

7. Integration Layer: Chainlink oracle integration

3.2 Wallet Structure

The contract utilizes a multi-wallet architecture with immutable addresses for

different aspects of the token economy:

Wallet Address Purpose

OWNER_WALLET
0xC20a9972a8865C697eA7E04a0c28444F778da9e

b

Contract

ownership

MULTISIG
0xC7Ef02A1b8A339674BDC03de7ddCFE8332139

9D2

Secure fund

storage

SUBSCRIPTION_WALL

ET

0x370c6c3860B56D6bdbCa790043FbA419D4a30c

36

Public sale

token

allocation

FEE_WALLET
0x9cEEb9430A3837281c57f3E96Ab9cfbFd7DDc5

47

Transaction

fee

collection

REWARD_WALLET
0xba1d2e78fc8CAc97B4772E5D52EBd79341C621

f8

Staking and

referral

rewards

LIQUIDITY_WALLET
0x1ac20b0DdbB3cb1DECa51d5E9C6ce5139A423F

0F

Liquidity

provision

PRIVATE_WALLET
0x47aE82ADfE5a4A9ec37cE369393D53B33854A

EBB

Private sale

allocation

FUTURE_WALLET
0xBaC81574dDC152Ed4D77007D3cbe58e37cB9F

C55

Future

developme

nt funding

BURN_WALLET
0x1F2154D4BD1C91ad1F77043aF15A814f5CD84

a38

Token

burning

3.3 Flow Diagram

The main operational flows within the contract:

1. Token Purchase Flow:

2. User (sends BNB) → Contract → Fee Collection → Phase Validation →

Token Calculation → Optional Locking → Transfer → Promo/Referral
Processing

3. Staking Flow:

User (with KYC) → Stake → 180-day Lock → Redemption → Principal
Return + Rewards

4. Revenue Sharing Flow:

Admin → Distribute Revenue → Create Distribution → Users Claim →
Revenue Transfer

5. Referral Flow:

6. Referrer (with KYC) → New User Purchase → Referral Reward →

180-day Vesting → Claim → Reward Transfer

4. Technical Dependencies

4.1 External Libraries

The contract relies on the following external libraries:

Library Version Purpose

@openzeppelin/contracts/token/ERC20/ERC20.sol 4.9.0
Base ERC20

implementation

@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol 4.9.0 Permit functionality

@openzeppelin/contracts/access/Ownable.sol 4.9.0 Ownership control

@openzeppelin/contracts/access/AccessControl.sol 4.9.0 Role-based permissions

@openzeppelin/contracts/security/Pausable.sol 4.9.0 Pause functionality

@openzeppelin/contracts/security/ReentrancyGuard.sol 4.9.0 Reentrancy protection

@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol 4.9.0 Safe token operations

@openzeppelin/contracts/utils/math/Math.sol 4.9.0 Safe math operations

4.2 External Integrations

4.2.1 Chainlink Price Feed

The contract integrates with Chainlink's BNB/USD price feed to accurately convert

between BNB and USD:

 Feed Address: 0x0567F2323251f0Aab15c8dFb1967E4e8A7D42aeE

(BNB/USD on BNB Chain)

 Interface: IPriceFeed

 Functions Used:

o latestRoundData(): Gets the latest price data

o decimals(): Gets the decimal precision of the feed

The feed provides the USD price of BNB with 8 decimals of precision, which is then

converted to 18 decimals for internal calculations.

4.3 Compiler Requirements

 Solidity Version: ^0.8.24

 Optimizer: Enabled (200 runs)

 EVM Version: London

 License: MIT

5. Access Control System

5.1 Role Definitions

The contract implements a role-based access control system with the following roles:

Role Identifier Purpose

KYC_ROLE keccak256("KYC_ROLE")

Addresses that have

completed KYC

verification

BLACKLIST_ROLE keccak256("BLACKLIST_ROLE")

Addresses that are

prohibited from

using the contract

ADMIN_ROLE keccak256("ADMIN_ROLE")

Administrative

addresses with

elevated privileges

DEFAULT_ADMIN_ROLE AccessControl default

Super-admin role

for role

management

5.2 Role-Based Function Access

Function Group Required Role Description

Staking Operations KYC_ROLE
Functions for staking and

redeeming tokens

Reward Claims KYC_ROLE
Functions for claiming

promotional and referral rewards

Revenue Claims KYC_ROLE
Functions for claiming revenue

shares

Administrative

Operations
ADMIN_ROLE

Functions for contract

configuration and management

Role Management DEFAULT_ADMIN_ROLE
Functions for assigning and

revoking roles

5.3 Modifiers

The contract implements the following access control modifiers:

 onlyKYC: Requires the caller to have KYC_ROLE and not have

BLACKLIST_ROLE

 notBlacklisted: Requires the caller to not have BLACKLIST_ROLE

 notInEmergency: Requires emergency mode to be disabled

 validPhase: Requires the sale to be active

6. Data Structures

6.1 Phase Structure

The Phase struct represents a token sale phase:

solidity

struct Phase {

 uint256 priceUSD; // Price in USD with 6 decimals ($0.017 = 17000)

 uint256 cap;

 uint256 sold;

 uint256 endTime;

 uint256 leftover;

}

6.2 Promotional Code Structure

The Promo struct represents a promotional code configuration:

solidity

struct Promo {

 uint256 min; // Minimum purchase amount

 uint256 max; // Maximum purchase amount

 uint256 bonus; // Bonus token amount

 bool active; // Whether the code is active

}

6.3 State Variables

6.3.1 Token Configuration

solidity

uint256 public constant MAX_SUPPLY = 2_500_000_000 * 1e18; // 2.5
billion tokens

uint256 public constant MIN_PURCHASE = 100 * 1e18; // 100
token minimum

uint16 public burnBP = 10; // 0.1%
burn rate

bool public burnEnabled; // Burn
toggle

uint16 public apy = 700; // 7% APY
(in basis points)

6.3.2 Sale Configuration

solidity

uint256 public constant TX_FEE_MIN_USD = 5 * 1e6; // $5
minimum fee

uint16 public constant FEE_BP_PHASE1 = 75; // 0.75%
fee

uint16 public constant FEE_BP_PHASE2 = 100; // 1.00%
fee

uint16 public constant FEE_BP_PHASE3 = 125; // 1.25%
fee

uint256 public constant PHASE1_END = 1748649600; // May 31,
2025

uint256 public constant PHASE2_END = 1750569600; // Jun 21,
2025

uint256 public constant PHASE3_END = 1752950400; // Jul 18,
2025

6.3.3 Time Locks

solidity

uint256 public constant PROMO_EXPIRY = 40 days; // Promo
claim window

uint256 public constant STAKING_PERIOD = 180 days; // Staking
duration

uint256 public constant PHASE1_LOCK = 80 days; // Phase 1
lock period

uint256 public constant REWARD_LOCK = 180 days; // Reward
lock period

6.3.4 Cap Limitations

solidity

uint256 public constant PROMO_CAP = 250_000 * 1e18; // Promo
token cap

uint256 public constant REFERRAL_CAP = 5_000_000 * 1e18; //
Referral token cap

7. Token Sale Implementation

7.1 Phase Configuration

The contract implements a three-phase token sale with increasing prices:

Phase Price (USD) Allocation End Date

Phase 1 $0.017 150,000,000 AXC May 31, 2025

Phase 2 $0.027 250,000,000 AXC June 21, 2025

Phase 3 $0.037 425,000,000 AXC July 18, 2025

7.2 Phase Transition Logic

Phases automatically advance when either:

1. The current phase end time is reached

2. The phase allocation is fully sold

The transition process:

1. Remaining funds are sent to the MULTISIG wallet

2. Current phase is incremented

3. Unsold tokens from the previous phase are added to the next phase

7.3 Token Purchase Process

The token purchase flow in buyWithBNB:

1. Collect transaction fee based on current phase

2. Validate referrer (if provided)

3. Check and potentially advance phase if needed

4. Calculate token amount based on BNB amount and current USD price

5. Validate minimum purchase and phase cap

6. Update phase sold amount

7. For Phase 1, lock 50% of tokens for 80 days

8. Transfer tokens to buyer

9. Apply burn if enabled

10. Process promotional code bonus if applicable

11. Process referral reward if applicable

7.4 Fee Structure

Transaction fees increase with each phase:

Phase Fee Percentage Minimum Fee

Phase 1 0.75% $5 USD

Phase 2 1.00% $5 USD

Phase 3 1.25% $5 USD

Fee calculation:

1. Convert transaction value from BNB to USD using Chainlink

2. Calculate percentage fee based on phase

3. Apply minimum fee if percentage fee is lower

4. Convert fee from USD to BNB

5. Send fee to FEE_WALLET

8. Reward Mechanisms

8.1 Promotional System

8.1.1 Promotional Codes

The contract includes five predefined promotional codes:

Promo Code Purchase Range (AXC) Bonus (AXC)

Mo3AXC9cl 4,500 - 12,000 500

Cl1AXC3me 15,000 - 45,000 2,000

Ah5AXC10ng 75,000 - 140,000 5,000

Kh15AXC20bo 215,000 - 285,000 15,000

Ha25AXC40bo 360,000 - 570,000 30,000

8.1.2 Promotional System Logic

1. When a user purchases tokens, they can provide a promo code

2. If the code is valid and the purchase amount is within range:

o The bonus amount is locked for 180 days

o The user is marked as having used that promo code

o The total promotional allocation is updated

3. Users can claim their promotional bonuses after the expiry period

8.2 Staking System

8.2.1 Staking Configuration

 APY: 7% (700 basis points)

 Staking Period: 180 days (fixed)

 Early Withdrawal: Not allowed

8.2.2 Staking Process

1. User with KYC role can stake tokens using the stake function

2. Tokens are transferred to the contract and locked for 180 days

3. Staking time and amount are recorded

4. After the staking period, user can redeem principal and rewards using
redeemStake

5. Rewards are calculated as: stake_amount * apy / 10000

6. Both principal and rewards are transferred to the user

8.3 Referral System

8.3.1 Referral Configuration

 Reward Rate: 5% of the referred purchase

 Vesting Period: 180 days

 Total Cap: 5,000,000 AXC

8.3.2 Referral Process

1. When a user purchases tokens, they can specify a referrer address

2. If the referrer has KYC role:

o Referral reward (5% of purchase) is calculated

o Reward is added to referrer's pending rewards

o Vesting time is recorded if first referral

o Rewards are locked for 180 days

3. After the vesting period, referrer can claim rewards using claimReferral

8.4 Revenue Sharing

8.4.1 Revenue Distribution Logic

1. Admin can distribute revenue using distributeRevenue

2. Each distribution is assigned a unique index

3. Distribution amount and total staked amount are recorded

4. Stakers can claim their share using claimRevenue

5. Share is calculated as: user_stake * pool_amount / total_staked

6. Each distribution must be claimed individually

9. External Integrations

9.1 Chainlink Price Feed

9.1.1 Integration Purpose

The contract uses Chainlink's BNB/USD price feed to:

1. Convert BNB to USD for accurate token pricing

2. Calculate transaction fees in USD equivalent

3. Ensure consistent token pricing regardless of BNB volatility

9.1.2 Price Feed Implementation

solidity

function getBNBUSDPrice() public view returns (uint256) {

 (

 uint80 roundID,

 int256 price,

 ,

 uint256 timeStamp,

 uint80 answeredInRound

) = IPriceFeed(PRICE_FEED).latestRoundData();

 if (price <= 0) revert InvalidPrice();

 if (timeStamp < block.timestamp - PRICE_STALE_THRESHOLD) revert
StalePrice();

 if (answeredInRound < roundID) revert PriceDataError();

 // Adjust to 18 decimals (Chainlink BNB/USD has 8 decimals)

 uint8 decimals = IPriceFeed(PRICE_FEED).decimals();

 if (decimals < 18) {

 return uint256(price) * 10**(18 - decimals);

 } else {

 return uint256(price) / 10**(decimals - 18);

 }

}

9.1.3 Price Data Validation

The contract includes three validations for price data:

1. Negative Price Check: Ensures price is positive

2. Staleness Check: Ensures price is updated within the last hour

3. Round Completeness Check: Ensures the answer is from a complete round

10. Function Specifications

10.1 Constructor

solidity

constructor()

Functionality:

 Initializes the contract with ERC20 name "Alpha X Coin" and symbol "AXC"

 Sets OWNER_WALLET as the owner

 Grants necessary roles to OWNER_WALLET

 Mints initial token allocations

 Sets up sale phases and promotional codes

 Locks REWARD_WALLET tokens

10.2 Price and Conversion Functions

10.2.1 getBNBUSDPrice

solidity

function getBNBUSDPrice() public view returns (uint256)

Parameters: None

Returns: Current BNB/USD price with 18 decimals

Functionality: Gets the latest BNB/USD price from Chainlink with validation

10.2.2 convertUSDToBNB

solidity

function convertUSDToBNB(uint256 usdAmount) public view returns (uint256)

Parameters:

 usdAmount: USD amount with 6 decimals

Returns: Equivalent BNB amount with 18 decimals

Functionality: Converts USD to BNB based on current price

10.2.3 calculateTokenAmount

solidity

function calculateTokenAmount(uint256 bnbPaid, uint256 usdPrice) public
view returns (uint256)

Parameters:

 bnbPaid: Amount of BNB paid

 usdPrice: USD price per token with 6 decimals

Returns: Token amount with 18 decimals

Functionality: Calculates token amount based on BNB paid and USD price

10.3 Token Sale Functions

10.3.1 buyWithBNB

solidity

function buyWithBNB(string memory code, address referrer) external payable
whenNotPaused notBlacklisted validPhase notInEmergency

Parameters:

 code: Promotional code

 referrer: Address of referrer

Functionality:

 Collects transaction fee

 Validates referrer

 Processes token purchase

 Applies phase locking if applicable

 Processes promotional code if valid

 Processes referral reward if applicable

10.4 Promotional Functions

10.4.1 claimPromo

solidity

function claimPromo(string memory code) external payable whenNotPaused
onlyKYC notInEmergency

Parameters:

 code: Promotional code used during purchase

Functionality:

 Validates the user has used the promo code

 Checks expiry period

 Transfers promotional bonus tokens to user

10.5 Staking Functions

10.5.1 stake

solidity

function stake(uint256 amount) external payable whenNotPaused onlyKYC
notInEmergency

Parameters:

 amount: Amount of tokens to stake

Functionality:

 Transfers tokens from user to contract

 Records staking amount and time

 Updates total staked amount

10.5.2 redeemStake

solidity

function redeemStake() external payable whenNotPaused onlyKYC
notInEmergency

Parameters: None

Functionality:

 Validates staking period completion

 Calculates reward amount

 Returns principal and rewards to user

 Updates total staked amount

10.6 Referral Functions

10.6.1 claimReferral

solidity

function claimReferral() external payable whenNotPaused onlyKYC
notInEmergency

Parameters: None

Functionality:

 Validates vesting period completion

 Transfers referral rewards to user

 Updates total referral amount

10.7 Revenue Sharing Functions

10.7.1 distributeRevenue

solidity

function distributeRevenue(uint256 amount) external onlyRole(ADMIN_ROLE)
notInEmergency

Parameters:

 amount: Amount of tokens to distribute

Functionality:

 Creates a new revenue distribution

 Records distribution amount and total staked amount

 Increments revenue index

10.7.2 claimRevenue

solidity

function claimRevenue(uint256 idx) external payable whenNotPaused onlyKYC
notInEmergency

Parameters:

 idx: Index of the revenue distribution

Functionality:

 Validates user hasn't claimed this distribution

 Calculates user's share

 Transfers share to user

10.8 Administrative Functions

10.8.1 pause and unpause

solidity

function pause() external onlyRole(ADMIN_ROLE)

function unpause() external onlyRole(ADMIN_ROLE)

Parameters: None

Functionality: Pauses or unpauses contract functions

10.8.2 Emergency Mode Functions

solidity

function activateEmergency() external onlyRole(ADMIN_ROLE)

function deactivateEmergency() external onlyRole(ADMIN_ROLE)

Parameters: None

Functionality: Activates or deactivates emergency mode

10.8.3 finalizePhase

solidity

function finalizePhase() external onlyRole(ADMIN_ROLE)

Parameters: None

Functionality:

 Flushes current phase funds to MULTISIG

 Ends the sale immediately

10.8.4 withdrawBNB

solidity

function withdrawBNB(address to) external onlyRole(ADMIN_ROLE)

Parameters:

 to: Recipient address

Functionality: Withdraws all BNB from contract to specified address

10.8.5 rescueTokens

solidity

function rescueTokens(address token, address to, uint256 amount) external
onlyRole(ADMIN_ROLE)

Parameters:

 token: Address of the token contract

 to: Recipient address

 amount: Amount of tokens to rescue

Functionality: Rescues ERC20 tokens accidentally sent to contract

11. Events

The contract emits the following events:

11.1 Token Events

solidity

event TokensPurchased(address indexed buyer, uint256 amount, uint8 indexed
phase);

event BurnToggled(bool enabled);

11.2 Reward Events

solidity

event PromoAwarded(address indexed user, string indexed code, uint256
bonus);

event StakeStarted(address indexed user, uint256 amount);

event StakeEnded(address indexed user, uint256 principal, uint256 reward);

event ReferralGranted(address indexed referrer, uint256 amount);

event ReferralClaimed(address indexed user, uint256 amount);

11.3 Revenue Events

solidity

event RevenueAdded(uint256 indexed idx, uint256 amount);

event RevenueClaimed(address indexed user, uint256 indexed idx, uint256
share);

11.4 Administrative Events

solidity

event PhaseFundsSent(uint8 indexed phase, uint256 amount);

event PhaseAdvanced(uint8 indexed oldPhase, uint8 indexed newPhase);

event SaleEnded();

event APYUpdated(uint16 oldAPY, uint16 newAPY);

event TokensLocked(address indexed user, uint256 amount, uint256
unlockTime);

11.5 Access Control Events

solidity

event KYCGranted(address indexed user);

event KYCrevoked(address indexed user);

event BlacklistAdded(address indexed user);

event BlacklistRemoved(address indexed user);

event EmergencyModeActivated(address indexed by);

event EmergencyModeDeactivated(address indexed by);

12. Security Implementation

12.1 Access Control Implementation

The contract uses OpenZeppelin's AccessControl for role-based permissions:

 DEFAULT_ADMIN_ROLE: Super-admin role for role management

 KYC_ROLE: Required for staking and claiming rewards

 BLACKLIST_ROLE: Prohibits participation in the ecosystem

 ADMIN_ROLE: Allows administrative operations

12.2 Reentrancy Protection

The contract uses OpenZeppelin's ReentrancyGuard to protect against reentrancy

attacks. All functions that transfer tokens or ether implement the nonReentrant

modifier.

12.3 Emergency Circuit Breakers

The contract implements two emergency mechanisms:

1. Pausable: Pauses most contract functions

2. Emergency Mode: More restrictive than pause, blocks most operations

12.4 Input Validation

The contract implements comprehensive input validation:

 Custom error types for specific validation failures

 Early validation of inputs and state preconditions

 Oracle data validation for price feed

12.5 Fund Security

The contract implements several fund security measures:

 Immutable wallet addresses

 Multi-signature wallet for main funds

 Token locking mechanisms

 Owner-restricted fund movement

12.6 Oracle Security

Price feed security measures:

 Staleness check (1-hour threshold)

 Negative price check

 Round completeness check

13. Gas Optimization

The contract implements several gas optimization techniques:

13.1 Custom Errors

Uses custom error types instead of revert strings for gas efficiency:

solidity

error Unauthorized(); error InsufficientFee(uint256,uint256); error
SaleInactive();

error BelowMin(uint256); error PhaseCap(); error LockedTokens(); error
InvalidReferrer();

error NoPromo(); error NothingToClaim(); error ZeroAddress(); error
EmergencyMode();

error PriceDataError(); error StalePrice(); error InvalidPrice();

13.2 Storage Optimization

Efficient use of storage slots:

 Appropriate uint sizes (uint16 for percentages)

 Constant variables for fixed values

13.3 Function Visibility

Appropriate function visibility modifiers:

 Internal functions for internal logic

 Public only when external access is required

13.4 Logic Optimization

 Early returns and short-circuiting

 Efficient conditional evaluations

 Minimal redundant calculations

14. Deployment Requirements

14.1 Deployment Environment

 Network: BNB Chain Mainnet

 Compiler Version: Solidity 0.8.24

 Optimization: Enabled (200 runs)

14.2 Deployment Wallet Requirements

 High security wallet (hardware wallet recommended)

 Sufficient BNB for deployment gas costs

 Access to all wallet addresses specified in the contract

14.3 Pre-Deployment Checklist

1. Verify all immutable wallet addresses

2. Confirm phase timing and pricing

3. Validate promotional code setup

4. Ensure Chainlink price feed address is correct

5. Verify token allocation percentages

14.4 Post-Deployment Configuration

1. Verify contract is initialized correctly

2. Grant necessary roles to operating wallets

3. Verify token balances in designated wallets

4. Test basic functionality (purchase, stake, etc.)

5. Verify contract on BscScan

15. Testing Guidelines

15.1 Unit Tests

Recommended unit tests for core functionality:

 Token transfer and approval

 Role-based access control

 Phase transition logic

 Price conversion accuracy

 Fee calculation correctness

 Staking and reward calculation

 Revenue sharing distribution

 Promotional code validation

15.2 Integration Tests

Recommended integration tests:

 Full token purchase flow

 Staking and redemption cycle

 Referral reward flow

 Revenue distribution and claiming

 Chainlink price feed integration

15.3 Security Tests

Recommended security tests:

 Access control boundary testing

 Reentrancy attack simulation

 Price manipulation attack simulation

 Emergency mode activation and deactivation

 Pause functionality verification

 Locked token transfer attempts

16. Appendices

16.1 Error Codes

Error Code Description

Unauthorized Caller doesn't have required permission

InsufficientFee Insufficient BNB sent to cover fee

SaleInactive Token sale is not active

BelowMin Purchase below minimum amount

PhaseCap Phase allocation cap reached

LockedTokens Attempted to transfer locked tokens

InvalidReferrer Invalid referrer address

NoPromo Promotional code not valid or used

NothingToClaim No rewards to claim

ZeroAddress Zero address provided

Error Code Description

EmergencyMode Function disabled in emergency mode

PriceDataError Error in price feed data

StalePrice Price data is outdated

InvalidPrice Price is invalid (zero or negative)

16.2 Glossary

 APY: Annual Percentage Yield

 KYC: Know Your Customer

 AML: Anti-Money Laundering

 Basis Points (BP): 1/100th of a percent (10000 BP = 100%)

 Oracle: External data provider (Chainlink)

 Reentrancy: Attack vector where a function is called recursively

